
Journal of Applied Mechanics and Technical Physics, Vol. 43, No. 6, pp. 811–816, 2002

GAS FLOWS WITH SPIRAL AND HELICAL LEVEL LINES

UDC 517.944+533S. V. Habirov

An invariant submodel of rank 1 describing flows with spiral and helical level lines is considered. It
is shown that, for the case of spiral level lines, there is a smooth gas flow in a twisted Laval nozzle.
For the case of helical level lines, two flows are conjugated via the helical surface of the shock wave.

Introduction. Invariant solutions of gas-dynamic equations are considered within the framework of the
SUBMODELS program [1]. By now, a classification of submodels has been carried out, general properties have
been identified, and individual properties of some submodels have been studied [2, 3]. The invariant solution of
rank 1 is determined by a three-dimensional subalgebra admissible by gas-dynamic equations. Let us characterize
a set of such solutions as a whole. There are 37 subalgebras for the general equation of state, generating invariant
submodels of rank 1. Invariant submodels are systems of ordinary differential equations, most of which can be
integrated. Nonintegrable submodels, eight of which are autonomous systems and three are nonautonomous, are
reduced to a system of two first-order equations. One of the examined nonautonomous systems (subalgebra 3.1
in [1, Table 6]) describes stationary conical flows [4, p. 318], two others are not sufficiently studied (subalgebras 3.3
and 3.4). Autonomous systems are reduced to the well-known equations: Riccati equation (subalgebras 3.7, 3.25,
and 3.26) or Abel’s equation (subalgebras 3.5, 3.21, and 3.22). Subalgebra 3.20 specifies the Prandtl–Mayer wave.
In this work, an autonomous system of subalgebra 3.2 is considered.

1. Submodel Equations. The family of subalgebras 3.2 is given by the basis of operators in the cylindrical
system of coordinates {∂x, ∂t, (βt + αx)∂x + αr∂r + ∂θ + β∂U}, where α and β are parameters of the family of
subalgebras. By means of invariants, we define the representation of an invariant solution

U = βθ + U1(s), V = V (s), W = W (s), ρ = ρ(s), S = S(s),

s = r e−αθ, p = f(ρ, S),

where U is the velocity along the x axis, V and W are the radial and circular velocity components, ρ is the density,
S is the entropy, p is the pressure, and the function f specifies the equation of state. For α 6= 0, it is more convenient
to use the invariant θ1 = θ − α−1 ln r instead of s.

The gas-dynamic equations yield four types of solutions.
1. V = 0, α 6= 0, W = 0, and p = p0 [ρ = ρ(θ1) and U1 = U1(θ1) are arbitrary functions]. This solution

corresponds to an isobaric flow. The streamlines are parallel to the x axis. The level surfaces are cylinders with
the generatrix parallel to the x axis, and with the directrix in the form of a logarithmic spiral. For the flow to
be continuous, the function ρ(θ1) should be periodic with a period 2π, and the function U1(θ1) should have a
discontinuity U1(θ1 + 2π) = U1(θ1)− 2πβ.

2. V = 0, α = 0, and W 2 = rp′ρ−1 [p = p(r) (p′ > 0), ρ = ρ(r), and U1 = U1(r) are arbitrary functions].
The world lines are determined by the equalities

x = βt2[p′(r0)/(r0ρ(r0))]1/2/2 + t(βθ0 + U1(r0)) + x0,

r = r0, θ = t[p′(r0)/(r0ρ(r0))]1/2 + θ0.

For β = 0, the trajectory is a helical line on a cylinder r = r0 with a step 2πU(r0)r0ρ(r0)1/2(p′(r0))−1/2.

Institute of Mechanics, Ufa Scientific Center, Russian Academy of Sciences, Ufa 450000. Translated from
Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 43, No. 6, pp. 32–38, November–December, 2002. Original
article submitted May 7, 2002.

0021-8944/02/4306-0811 $27.00 c© 2002 Plenum Publishing Corporation 811



Fig. 1

3. α = 0, V 6= 0, S = S0, rρV = E, rW = D, V 2 + 2i(ρ) = C2 −D2r−2, and U1 = U0 − βDC−1

∫
ρr−1 dr

(S0, E, D, U0, and C are constants; i =
∫
ρ−1 dp is the enthalpy). This solution corresponds to four vortex-free

flows from a cylindric swirled source (for E < 0, from a sink) [5]. In such flows, there emerge limiting lines, on
which acceleration turns into infinity. The flow is not extended beyond these lines.

4. α 6= 0, V 6= αW , S = S0, U1 = βα−1 ln |ρ(V − αW )| − βθ1, and V 2 + W 2 + 2i(ρ) = C2 [S0 and C are
constants]. The submodel of rank 1 is reduced to the autonomous equation

dV

dW
=

fρ(V + αW ) +W 2(V − αW )
fρ(W − αV )− VW (V − αW )

(1)

and the quadrature

α−1 ln |W |+
∫
W−1 dV = θ1 − θ∗, (2)

where θ∗ is a constant. For β = 0, the flow is vortex-free plane and is not a simple wave of submodels of rank 2
or 3 but a double wave of gas-dynamic equations.

2. Flow with a Helical Shock Wave. Two solutions of type 2 at β = 0 are matched via a shock wave.
Let h(x, r, θ) = 0 be the equation of the shock-wave surface. Then the shock-wave parameters can be determined:
surface velocity in the normal direction Dn = 0, tangential component of the particle velocity uσ = u − unn,
velocity projection onto the normal un = u · n, and normal to the surface n = ∇h|∇h|−1. From the condition
on the shock wave [uσ] = 0, it follows that hr = 0 and hxh

−1
θ = [U ](r[W ])−1 = k = const ([F ] = F2 − F1 is the

difference of the parameter F values on different sides of the surface h = 0). Hence, we have h = θ + kx− θ0, i. e.,
the trace of the shock-wave surface on the cylinder r = r0 is a helical line with a step −2πk−1.

The equations on a shock wave take the following form [6, p. 39]:

(krU1 +W1)2 = (k2r2 + 1)ρ2[p](ρ1[p])−1, (k2r2 + 1)[W ]2 = [p][ρ](ρ1ρ2)−1,

[U ] = kr[W ], H(p2, ρ2; p1, ρ1) = 0.

The second equality here specifies the Hugoniot adiabat, W 2
1 = p′1(rρ1)−1, and W 2

2 = p′2(rρ2)−1. If we specify k,
ρ1, and p1 (p′1 > 0), the Hugoniot equation yields ρ−1

2 = F (p2, r) < ρ−1
1 for p2 > p1. Other equations determine U1

and U2, and in order to obtain p2(r), we have the ordinary differential equation

r(k2r2 + 1)Fp′2 = (((p2 − p1)(ρ−1
2 − F ))1/2 ± (p′1ρ

−1
1 (k2r2 + 1))1/2r1/2)2.

Hence, p′2 > 0. The initial condition for this equation can be given arbitrarily: p2(r0) = p20 > p1(r0).
Thus, in order to match two solutions via a helical shock wave with a specified step (the shock-wave trace

on the cylinder r = r0 is a helical line with a step independent of r0), the solution ahead of the shock wave with
arbitrary functions ρ1(r) and p1(r) (p′1 > 0) can be used. Then the functions ρ2(r), p2(r), U2(r), and U1(r) are
obtained from the equations on the shock wave, and p′2 > 0.

Depending on the sign of [W ], there are two flow configurations: with a wall ahead of the shock wave (Fig. 1a)
and with a wall behind the shock wave (Fig. 1b). The walls are formed by helical streamlines.
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3. Integral Curves in a Hodograph Plane. In polar coordinates of the hodograph plane V = Q cosϑ,

W = Q sinϑ, Q2 + 2

ρ∫
0

ρ−1fρ dρ = C2, submodel (1), (2) acquires the form

dQ

dθ1
= − αQfρ

Q2(cosϑ− α sinϑ)2 − (α2 + 1)fρ
,

dϑ

dθ1
= α

αfρ +Q2 sinϑ(cosϑ− α sinϑ)
Q2(cosϑ− α sinϑ)2 − (α2 + 1)fρ

. (3)

For the autonomous equation and quadrature, the resulting representations are

Qϑ(αfρ +Q2 sinϑ(cosϑ− α sinϑ)) + fρQ = 0; (4)

α−1(ln | sinϑ|+ lnQ) +
∫
Q−1 cot ϑ dQ = θ1 + ϑ− θ∗. (5)

The physical integral curves of Eq. (1) or Eq. (4) lie within a circle Q < C. The circumference Q = C is the
integral curve of Eq. (1), on which ρ = 0 and Cs| sinϑ| = exp (α(ϑ− θ∗)) (“vacuum” solution).

The streamlines are found from the equation
dr

V
=
rdθ

W
=

αdx

β ln |rρ(V − αW )|
.

The projections of streamlines onto the plane (r, θ) satisfy the equality

dr/r = cot ϑ dϑ or dθ1 = (1− V/(αW )) dθ. (6)

The spatial flow is reconstructed from its projection onto the plane (r, θ) with nonintersecting projections
of streamlines. If the projections intersect, a spatial flow is also possible for β 6= 0. Further, the projections of
streamlines onto the plane (r, θ) are considered, which are conventionally called the streamlines.

For the “vacuum” solution, the equation for streamlines takes the form

(α− cot ϑ) d(θ + ϑ) = 0.

For ϑ + θ = const, “vacuum” trajectories are straight lines C|y sin θ0 − z cos θ0| = exp (α(θ0 − θ∗)) (y = r cos θ
and z = r sin θ). The position of the straight lines is determined by the parameter θ0. For ϑ = arccot α−1, the
“vacuum” trajectory is a logarithmic spiral r = r0 eαθ [r0 = C−1

√
1 + α2 exp (α(arccot α−1 − θ∗))], which is an

envelope of the family of straight lines and a level line. In space, the level line corresponds to a cylindrical level
surface, whose projection onto the plane x = 0 is a level line.

Equation (1) admits inversion V → −V , W → −W ; consequently, the integral curves are symmetric about
the origin of the coordinates.

There are five singularities:
— V = W = 0, ρ = ρ0, 2i(ρ0) = C2 are a focus and a stagnation point;
— W = 0, V = ±C, ρ = 0 is a node for γ 6= 2 and a degenerate node for γ = 2 (f(ρ) ∼ ργ as ρ→ 0);
— V = ±αC(1 + α2)−1/2, ρ = 0 is a saddle S.
For γ 6= 2, the integral curves enter the node (C, 0), tangent to the straight line W = α(V −C)(γ−1)/(2−γ);

the only integral line entering the saddle [αC(1 + α2)−1/2, C(1 + α2)−1/2] inside the circle Q < C is tangent to the
straight line (Fig. 2a)

((γ − 1)α2 − γ)V + (2γ − 1)αW = C(γ − 1)α
√

1 + α2. (7)

For γ = 2, the integral lines enter the degenerate node (C, 0), tangent to the circle Q = C (Fig. 2b). The dashed
curves in Fig. 2 are circles of critical velocities Q = a∗, a2

∗ + I(a2
∗) = C2, I(a2) = 2i(ρ), fρ = a2.

It follows from Eqs. (3) that the sign of dθ1 is determined by the sign of the expression ∆ = Q2(cosϑ −
α sinϑ)2 − fρ(α2 + 1), dQ < 0 during the motion along the integral curve toward the center of the circle Q < C.
On the curve ∆ = 0, the direction of the increase in θ1 changes, and acceleration tends to infinity. This curve is a
limiting line, beyond which no continuous flow is possible. On the limiting line, the following relation is fulfilled:
|ϑ−ϑ0| = ϕ (cot ϑ0 = α, ϕ is the Mach angle, and sin2 ϕ = a2Q−2). Differentiation of the last equality with respect
to ϑ yields sin 2ϕ = −(m + 2a2Q−2)Q−1Qϑ, where m = ρfρρf

−1
ρ and a2 = fρ. Consequently, the limiting line is

tangent to the circle at ϕ = 0, π, and ±π/2. For ϕ = 0 we have fρ = 0, ρ = 0, ϑ = ϑ0, and Q = C (saddle). For
ϕ = π/2, we have fρ = Q2, Q = a∗, and ϑ = ϑ0 + π/2 (tangency point of the circle of critical velocities). By virtue
of the symmetry of integral curves with respect to the origin, the limiting line is an oval tangential to the circle of
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Fig. 2

limiting velocities Q = C and to the circle of critical velocities. For a polytropic gas, the limiting line is an ellipse
Q2 = C2(γ − 1)(γ − cos2(ϑ− ϑ0))−1 (γ > 1 is the ratio of specific heats).

For points in the vicinity of the circle Q = C, the condition ∆ > 0 is fulfilled. This implies that the value of
θ1 increases outside the oval (limiting line) during centripetal motion along the integral curve and decreases inside
the oval. In Fig. 2, the arrows on the integral curves indicate the direction of increase or decrease in the absolute
value of velocity Q as θ1 increases.

4. Relative Position of Streamlines and Level Lines. The equations of level lines θ1 = θ−α−1 ln r = θ0

or r = r0 exp (αθ) specify logarithmic spirals. For β = 0, the level lines are within the range 0 6 θ0 < 2π or
1 6 r0 < exp (2πα).

Assumption. The streamline cannot be extended beyond the point of tangency with the level line.
Proof. The level lines satisfy the equation dθ1 = 0. By using (6), we obtain the condition of streamline

tangency to the level line

V = αW, or cot ϑ = α, or ϑ = ϑ0.

For ϑ = ϑ0, Eq. (3) yields the inequalities ϑθ1= − α2(1+α2)−1 < 0 and Qθ1 = αQ(1+α2)−1 > 0. Hence,
on moving along the streamline toward dθ1 > 0 across the point of streamline tangency to the level line, the angle
of inclination of the velocity vector to the vector of the position point monotonically decreases (dϑ < 0), and the
absolute value of velocity monotonically increases (dQ > 0).

If the streamline lies on one side of the level line and is tangent to it, then the neighboring level line intersects
this streamline at two points, where the values of ϑ are identical, which contradicts the monotonical change in the
slope of the velocity vector to the position-point vector observed when the streamline passes through the tangency
point.

Let the streamline cross the level line and be tangential to it at the intersection point. The angle between
the point vector on the streamline and the streamline has an extremum at the tangency point, since the angle
between the vector of any position point on the level line and the level line itself is constant and equal to ϑ0, which
contradicts the monotonical change in ϑ at the intersection of the tangency point.

It follows from the assumption that the integral curves of Eq. (1) should be treated only on one side of the
straight line V = αW or ϑ = ϑ0, ϑ = π + ϑ0 (Fig. 2a). Every segment of the integral curve describes a continuous
flow in the area bounded by two level lines.

5. Twisted Laval Nozzle. Let us consider an example of constructing a streamline for a segment of the
integral curve SPF from the saddle to the focus up to the point F of intersection with the straight line V = αW .
The curve is specified by the equation Q = Q(ϑ) [ϑ ∈ (ϑ0, ϑ0 + π)]. During the motion from the point S to the
point F , the values of θ1 decrease. As a streamline starting point, we take the point P , for which ϑ = π, Q = QP ,
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Fig. 3

and the velocity vector is directed to the center of the polar coordinate system in the plane of the flow. Let θ0 = 0
for this point; therefore, an initial ray of the polar coordinate system is specified in the plane of the flow. From (5)
and (6), there follows that the streamline is determined by the equalities

θ = π − ϑ+

ϑ∫
π

cot (ϑ− ϑ0)Q−1 dQ, θ1 = θ∗ − ϑ+ α−1 lnQ+

ϑ∫
π

cot ϑ
(dϑ
α

+
dQ

Q

)
, (8)

where ϑ is a constant and the parameter θ∗ defines the initial level line θ1 = θP = θ∗ − π + α−1 lnQP (Fig. 3).
For ϑ ∈ (π, π + ϑ0) Eq. (4) yields the inequality

−αQ−1Qϑ = {1 +Q2(τ − α)/[αfρ(1 + τ2)]}−1 < 1,

where τ = cot ϑ ∈ (α,∞). Hence, by virtue of (8), there follows

θ1(π + θ0) = θF = θ∗ − π − ϑ0 + α−1 lnQF

+

π+ϑ0∫
π

cot ϑ(α−1 +Q−1Qϑ) dϑ > θ∗ − π − ϑ0 + α−1 lnQF ,

θ(π + θ0) = −ϑ0 +

π+ϑ0∫
π

cot (ϑ− ϑ0)Q−1Qϑ dϑ > −ϑ0 − α−1 ln | sin(ϑ− ϑ0)|
∣∣∣π+ϑ0

π
→∞.

Therefore, the streamline coils up from infinity (at infinity, the streamline approaches the level line θ1 = θF ).
To analyze the streamline behavior for the parameter ϑ varying over the range (ϑ0, π), we use the pattern

of integral curves (see Fig. 2) and equalities (4) and (7), from which there follows

Qϑ |ϑ=ϑ0= γC/(α(1− γ)), Qϑ |ϑ=π= −α−1QP ,

where C = Q(ϑ0) and QP = Q(π).
For the integral curve from the saddle, the following inequalities hold: 1 < −αQ−1Qϑ < æ = γ(γ − 1)−1.

Then, by virtue of (8), the estimates

θ(θ0) = π − ϑ0 +

ϑ0∫
π

cot (ϑ− ϑ0)Q−1Qϑ dϑ > π − ϑ0 − α−1æ ln | sin(ϑ− ϑ0)|
∣∣∣ϑ0

π
→∞,

θ1(ϑ0) = θ∗ − ϑ0 + α−1 lnC +

ϑ0∫
π

cot ϑ(α−1 +Q−1Qϑ) dϑ = θS
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are valid, where the integral converges, since the integrand cot (α−1 + Q−1Qϑ) ∼ α−2a−2
P Q2

P has a finite limit at
the singularity ϑ = π − 0 or τ = cot ϑ→ −∞.

Thus, the streamline evolves to infinity as ϑ→ ϑ0, approaching the level line θ1 = θS .
Other streamlines are obtained by the transfer of velocity vectors along the level lines. Such a transfer can

be performed infinitely far at infinity and unboundedly close to zero if all the level lines in the flow considered are
different. This is possible if the following condition is fulfilled:

θ1(ϑ0)− θ1(ϑ0 + π) < 2π ⇒ α−1 ln
C

QF
+

ϑ0∫
π+ϑ0

cot ϑ(α−1 +Q−1Qϑ) dϑ < π,

which can be satisfied by choosing a proper value of α. This case results in a swirled flow between spiral level lines
with a transition through the velocity of sound (θ1 = θR is the sonic level line) from infinity to infinity with flow
turning (Fig. 3).

Any streamline coils up from infinity, where it asymptotically approaches the level line θ1 = θF . This
streamline can be treated as a wall. At some convolution, the streamline turns, intersects the sonic line, then turns
again and passes to infinity, asymptotically approaching the level line θ1 = θS , which determines the vacuum region.
For θS − θF < 2π, the resulting flow is univalent. For θS − θF > 2π, the continuous segment of the flow is possible
only at one convolution, where the flow turns. There can also be a multivalent flow, where β 6= 0 and particles
move perpendicular to the plane of variables (r, θ).

Two different streamlines specify an infinite twisted nozzle, which can be cut at every convolution (Fig. 3).
Conclusions. Invariant solutions of rank 1 for subalgebra 3.2 are represented as integrals or integral curves

and a quadrature. This invariant submodel is integrable. Physical interpretation of the formulas obtained is
a nontrivial problem. For every solution, it is necessary to identify the region of continuous gas flow, possible
peculiarities, and asymptotic behavior at infinity. The physical pattern of gas motion can be supplemented if the
possibility of matching invariant solutions via weak and strong discontinuities is defined. An example of shock-wave
conjugation via a helical surface and an example of a continuous flow in a twisted Laval nozzle show the possibility
of physical interpretation of invariant solutions.
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